Thursday, October 17, 2013

Sum of cube of first n natural numbers is the square of the sum of first n natural numbers !!

Proof for (Simple Try) !!
Sum of cube of first n natural numbers is the square of the sum of first n natural numbers !!

13+23 + 33+ … +n= (1 + 2 + 3+...+n) 2 

As we know the simple formula
----------------------------------
(a + b) 2 = a2 + 2*ab + b 2

(a + b + c) 2 = a2+ b2+ c 22 (ab + ac 
                                                    + bc)

(a + b + c + d) 2= a2+ b2+c2+ d2
                                                     2(ab + ac + ad 
                                                             + bc + bd 
                                                                     + cd )

The above algebric formula has some pattern ( marked as bold) .. 2 ( a (b+c+d) + b (c+d) + cd))

Now let us look into (1 + 2 … + n) 2

(1 + 2 … + n) 2   = 
             
           12+ 22 + 32 .. + n2 + 2*{1(2+3+4..n) + 2 (3+4+...+n) + ... (n-1)(n)}

             
 (1 + 2 … + n) 2
                             12+ 22 + 32 .. + n2 2*{1*2 + 1*3 + 1*4 + …+ 1*n
                                           + 2*3 + 2*4+ … + 2*n
                                                    + 3*4+…. + 3*n
                                                             +…..+ (n-1) (n)}

Consider the violet terms, this can be written as

2 * 1 + 3 (1+2) + 4 (1+2+3) + …+ (n)(1+2+…(n-1))

using some of first n terms formula ... ( n * (n+1) / 2)) 

The above terms can be rewritten as

2 + 3(2 * 3/2) + 4(3*4/2) + 5(4*5/2) + …. +n((n-1)n/2))

After simplifying, This can be written as

(1 + 2 … + n) 2= 12+ 22 + 32 … + n2 + 2 {2 + 3(2*3/2) + 4 (3*4/3) + ….. n ((n-1) (n/2)}

                          = 12+ 22 + 32 … + n2 + {1*22+2*32 + 3*42….+ (n-1)n2}

                          = 12+ 22 + 32 … + n2 + 22 + 2*32 + 3*4+ ... + (n-1)n

upon rearranging the terms

                           = 12+ (22  22) + (32*32) + … + ((n-1)n2 + n2) 

                            = 12+ (2 * 2) + ( 3 * 32) + … + (n* n2) 

                            =13+ 2 3+ …+ n 3  
                
(1 + 2 + 3 … +n) 2 = 13+ 2 3+ … +n 3          
                                              
Change LHS to RHS and vice –versa

13+ 2 3+ … +n3    =    (1 + 2 + 3 … +n) 2

FROM the induction ( 1 + 2 + 3 … n ) = ( n (n+1) / 2 ) the above equation can be written as

13+ 2 3+ … n3     =    (n (n+1)/ 2) 2  

No comments: