Proof for (Simple Try) !!
Sum of cube of first n natural numbers is the square of the sum of first n natural numbers !!
Sum of cube of first n natural numbers is the square of the sum of first n natural numbers !!
13+23 + 33+ … +n3 = (1 + 2 + 3+...+n) 2
As we know the simple formula
----------------------------------
(a + b) 2 =
a2 + 2*ab + b 2
(a + b + c) 2
= a2+ b2+ c 2+ 2 (ab + ac
+ bc)
+ bc)
(a + b + c + d) 2=
a2+ b2+c2+ d2+
2(ab + ac + ad
+ bc + bd
+ cd )
The above algebric formula has some pattern ( marked as bold) .. 2 ( a (b+c+d) + b (c+d) + cd))
Now let us look into (1 + 2 … + n) 2
(1 + 2 … + n) 2 =
12+ 22 + 32 .. + n2 + 2*{1(2+3+4..n) + 2 (3+4+...+n) + ... (n-1)(n)}
2(ab + ac + ad
+ bc + bd
+ cd )
The above algebric formula has some pattern ( marked as bold) .. 2 ( a (b+c+d) + b (c+d) + cd))
Now let us look into (1 + 2 … + n) 2
(1 + 2 … + n) 2 =
12+ 22 + 32 .. + n2 + 2*{1(2+3+4..n) + 2 (3+4+...+n) + ... (n-1)(n)}
(1 + 2 … + n) 2=
12+ 22 + 32 .. + n2 + 2*{1*2 + 1*3 + 1*4 + …+ 1*n
12+ 22 + 32 .. + n2 + 2*{1*2 + 1*3 + 1*4 + …+ 1*n
+ 2*3 + 2*4+ … + 2*n
+ 3*4+…. + 3*n
+…..+ (n-1) (n)}
Consider the violet terms,
this can be written as
2 * 1 + 3 (1+2) + 4 (1+2+3)
+ …+ (n)(1+2+…(n-1))
using some of first n terms formula ... ( n * (n+1) / 2))
The above terms can be rewritten as
using some of first n terms formula ... ( n * (n+1) / 2))
The above terms can be rewritten as
2 + 3(2 * 3/2) + 4(3*4/2)
+ 5(4*5/2) + …. +n((n-1)n/2))
After simplifying, This
can be written as
(1 + 2 … + n) 2=
12+ 22 + 32 … + n2 + 2 {2 +
3(2*3/2) + 4 (3*4/3) + ….. n ((n-1) (n/2)}
= 12+
22 + 32 … + n2 + {1*22+2*32
+ 3*42….+ (n-1)n2}
= 12+ 22 + 32 … + n2 + 22 + 2*32 + 3*42 + ... + (n-1)n2
= 12+ 22 + 32 … + n2 + 22 + 2*32 + 3*42 + ... + (n-1)n2
upon rearranging the terms
= 12+ (22 + 22) + (32 + 2*32) + … + ((n-1)n2 + n2)
= 12+ (2 * 22 ) + ( 3 * 32) + … + (n* n2)
= 12+ (22 + 22) + (32 + 2*32) + … + ((n-1)n2 + n2)
= 12+ (2 * 22 ) + ( 3 * 32) + … + (n* n2)
=13+
2 3+ …+ n 3
(1 + 2 + 3 … +n) 2 =
13+ 2 3+ … +n 3
Change LHS to RHS and
vice –versa
13+ 2 3+
… +n3 =
(1 + 2 + 3 … +n) 2
FROM the induction ( 1
+ 2 + 3 … n ) = ( n (n+1) / 2 ) the above equation can be written as
13+ 2 3+ … n3 = (n
(n+1)/ 2) 2
No comments:
Post a Comment